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ABSTRACT

The application of the second most popular artificial neural
networks (ANN), namely the radial basis function networks, has
been developed for obtaining sufficient quantitative structure-
retention relationships (QSRR) with improved accuracy.  The
present study examined a dataset of 25 substances as solutes to
two different stationary phases (silica and alumina).  The solutes
were analyzed to their structural descriptors and related to their
retention behavior, as expressed by their capacity factors, using
radial basis function (RBF) and generalized regression neural net-
works (GRNN) as function approximation systems.  

The proposed methods led to substantial gain in both the pre-
diction ability and the computation speed of the resulting models
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compared to regression models.  Furthermore, the results were
compared with that produced from classical linear and nonlinear
multivariate regression such as principal components regression
(PCR) and nonlinear (polynomial) partial least squares regression
(PLS).  Some of the proposed ANN models diminished the num-
ber of outliers, during their implementation to unseen data
(solutes), to zero.

INTRODUCTION

The interest in studies dealing with the retention behavior of solutes in dif-
ferent stationary phases has been increased substantially in the last years.1 In
these studies, the major aim is the development of improved expert systems capa-
ble to predict and describe the retention capability of different stationary phases,
for the better understanding of retention process, and to provide a valuable chro-
matographic tool for highlighting into the molecular mechanisms of retention in
a given HPLC system.  Almost, in all of these studies, much effort is concen-
trated on the calculation of structural descriptors, which characterize the exam-
ined solutes.  In literature, several models have been described, from linear to
nonlinear ones, in order to calculate these values as accurate as possible.2 In the
present study, it is described for first time in the literature, the application of RBF
and GRNN systems to predict accurately the capacity factor values of 25 struc-
turally diverse aromatic solutes (Table 1) in two stationary phases in isocratic
HPLC systems, without the prerequisite to specify any regression model (linear
or nonlinear) and to provide efficient QSRR models.

QSRR studies could be used for both the selection of principal physico-
chemical characteristics (descriptors) and relating them to retention values, and
the derivation of mathematical models that involve these multivariate data in
order to be used for predictive purposes in every HPLC system.  Multivariate
data consist of the results of observations of many different variables (physico-
chemical descriptors) for a number of individuals (molecules).  Each variable
may be regarded as constituting a different dimension, such that, if there are n
variables each object may be said to reside at a unique position in an abstract
entity referred to as n-dimensional hyperspace.  This hyperspace is necessarily
difficult to visualize, and the underlying theme of multivariate analysis (MVA) is,
thus, the description of a polynomial in which the dependent variables are related
to the independent variable(s).  Known methods for this include the multiple
regression analysis, experimental design techniques, nonlinear regression.  The
drawback, some times, of these very popular techniques is their inability to give
highly predictive models due to hidden nonlinearity inside the data variables or
the prerequisite to specify the mathematical model before the fitting of the data.
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RBF NETWORKS IN LC 2241

Table 1. Structures, Physicochemical Parameters, and Observed Capacity Factors Values of the
Examined Solutes in Two Stationary Phases

R2 π2

H Σα2

H Σβ2

H Vx µ δmax Vaq k′(1) k′(2)

Hexylbenzene 0.591 0.5 0 0.15 1.562 0.351 0.1326 649.7 4.56 3.721
1.3.5-Tris(1-methylethy)-

benzene 0.627 0.4 0 0.22 1.985 0.014 0.1309 777.15 4.887 4.147
1.4-Dinitrobenzene 1.13 1.63 0 0.41 1.065 0 0.5652 451.02 0.969 0.774
3-(Trifluoromethyl)phenol 0.425 0.87 0.72 0.09 0.969 2.096 0.4649 432.38 0.975 0.995
3.5-Dichlorophenol 1.02 1.1 0.83 0 1.02 1.408 0.2239 440.2 1.502 1.528
4-Hydroxybenzonitrile 0.94 1.63 0.79 0.29 0.93 3.313 0.2237 409.94 0.396 0.372
4-Iodophenol 1.38 1.22 0.68 0.2 1.033 1.586 0.2213 434.24 1.174 1.173
Methoxybenzene 0.708 0.75 0 0.29 0.916 1.249 0.1481 407.98 0.835 0.589
Benzamide 0.99 1.5 0.49 0.67 0.973 3.583 0.3448 418.21 0.303 �0.069
Benzene 0.61 0.52 0 0.14 0.716 0 0.1301 331.81 0.584 0.313
Chlorobenzene 0.718 0.65 0 0.07 0.839 1.307 0.1466 375.23 1.129 0.916
Cyclohexanone 0.403 0.86 0 0.56 0.861 2.972 0.1111 383.84 0.337 0.867
Dibenzothiophene 1.959 1.31 0 0.18 1.379 0.524 0.4465 555.67 3.041 3.126
Phenol 0.805 0.89 0.6 0.3 0.775 1.233 0.2173 353.02 0.099 0.047
1,1,2,3,4,4-

Hexachloro-1,3-
butadiene 1.019 0.85 0 0 1.321 0.001 0.0606 516.73 3.248 3.426

1H-Indazole 1.18 1.25 0.54 0.34 0.905 1.546 0.2752 405 0.822 0.647
3,7-Dihydro-1,3,7-

trimethyl-1-H-
purine-2,6-dione 1.5 1.6 0 1.35 1.363 3.708 0.401 569.32 1.616 1.042

4-Nitrobenzoic
acid 0.99 1.07 0.62 0.54 1.106 3.431 0.5643 467.67 �0.899 �0.924

1-Methyl-2-
pyrrolidone 0.491 1.5 0 0.95 0.82 3.594 0.307 381.5 0.257 �0.699

Napthalene 1.34 0.92 0 0.2 1.085 0 0.132 458.91 1.769 1.583
4-Chlorophenol 0.915 1.08 0.67 0.2 0.898 1.478 0.2201 396.25 0.758 0.758
Methylbenzene 0.601 0.52 0 0.14 0.716 0.263 0.1301 384.44 1.027 0.829
Piperazine 0.57 0.83 0.2 1.17 0.763 1.995 0.1583 355.56 0.797 0.252
Piperidine 0.422 0.46 0.1 0.69 0.804 1.168 0.1554 368.5 0.574 �0.021
Benzonitrile 0.742 1.11 0 0.33 0.871 3.335 0.1451 388.93 0.705 0.337

R2: excess molar refraction; �2

H: solute dipolarity/polarizability; ��2

H: solute overall hydrogen bond
acidity; ��2

H: solute overall hydrogen bond basicity; Vx: McGowan characteristic volume; �: total
dipole moment; �max: electron excess charge on an atom in solute molecule; Vaq: solvent (water) accessi-
ble molecular volume.
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So, there is a need to improve further, such kind of models in order to extract the
most accurate prediction.  To this end, artificial neural networks (ANN),3,4 and
especially the “supervised” ones, could be used successfully in QSRR studies
providing better results than the conventional regression models.

For a given data set, there are some patterns (e.g., a series of different
descriptors) which have desired known responses (capacity factors).  These two
types of data (the representation of the objects and their responses in the system)
form pairs, which for the present purpose are called inputs and targets.  The goal
of supervised learning is to find a model or mapping that will correctly associate
the inputs with the targets.  In the following, we shall examine the behavior of
feedforward neural networks, such as RBF and GRNN and the results will be
compared with that from the development of PCR and PLS methods.4

EXPERIMENTAL

An extremely powerful type of feedforward artificial neural networks is the
radial basis function (RBF) network, which differ strongly from the multilayer per-
ceptron (MLP) network in the activation functions and how they are used.
Generally, a network with three layers of weights and sigmoidal activation func-
tions can approximate to arbitrary accuracy any smooth mapping.  Furthermore,
Bishop5 appeals to the intuitive idea that any reasonable function can be approxi-
mated to arbitrary accuracy by a linear superposition of a sufficiently large number
of localized ‘bumb’ functions.  A two-layer network in which each hidden unit gen-
erates a bump-like function directly could achieve this.  Such networks are called
local basis networks, with most of our attention focusing on Gaussian basis func-
tions since, as well as being localized they have a number of analytical properties.  

The same conclusions are supported by the studies of Hartman6 Park, and
Sandberg.7 Finally, Girosi and Poggio8 have shown that radial basis function net-
works possess the property of best approximation, a property not shared by
MLPs.  To this end, in the present study, the RBF neural network architecture9

was chosen to implement, for the first time, a QSRR study.
An RBF network (Figure 1a), therefore, has a hidden layer of radial units,

each actually modeling a Gaussian response surface.  Since these functions are
non-linear, it is not actually necessary to have more than one hidden layer to
model any shape of function: sufficient radial units will always be enough to
model any function.  The remaining question is how to combine the hidden radial
unit outputs into the network outputs?  It turns out to be quite sufficient to use a
linear combination of these outputs (i.e., a weighted sum of the Gaussians).  The
RBF has an output layer containing linear units with linear activation function.
The advantages and disadvantages of RBF over MLP networks are presented in
details elsewhere.10
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Before linear optimization can be applied to the output layer of an RBF net-
work, the number of radial units must be decided, and then their centers and devi-
ations must be set.  Centers should be assigned to reflect the natural clustering of
the data.  The two most common methods are: a) Sub-sampling: randomly-cho-
sen training points are copied to the radial units.  Since they are randomly
selected, they will represent the distribution of the training data in a statistical
sense.  However, if the number of radial units is not large, the radial units may

RBF NETWORKS IN LC 2243

Figure 1. Schematic representation of the architectures and the way of processing of the
examined networks: 1a RBF and 1b GRNN.
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actually be a poor representation.11 b) K-Means algorithm: this algorithm5 tries to
select an optimal set of points, which are placed at the centroids of clusters of
training data.  Each training point belongs to a cluster center, and is nearer to this
center than to any other center.  Each cluster center is the centroid of the training
points, which belong to it.  If these algorithms fail to converge there are other
algorithms (unsupervised or supervised) that should be examined.5

Once centers are assigned, deviations are set.  The size of the deviation
(also known as spread) determines how spiky the Gaussian functions are.
Deviations should typically be chosen so that Gaussians overlap with a few
nearby centers.  Methods available are manually, heuristically or k-nearest neigh-
bor.  In the present study, manual selection of spread parameters (trial and error)
was performed.  Once centers and deviations have been set, the output layer can
be optimized using the standard linear optimization technique: the pseudo-
inverse (singular value decomposition) algorithm.12

One variant of RBF, which performs regression tasks, is the “General
Regression Neural Network” GRNN13 (Figure 1b), a term similar to kernel
regression.  It resembles a normalized RBF network in which there is a hidden
unit centered at every training case.  GRNN is a universal approximator for
smooth functions, so it should be able to solve any smooth function-approxima-
tion problem, given enough data.  The main drawback of GRNN is that, like ker-
nel methods in general, it suffers badly from the curse of dimensionality.  GRNN
cannot ignore irrelevant inputs without major modifications to the basic algo-
rithm.  GRNNs have advantages and disadvantages: they can only be used for
regression problems, train almost instantly, but tend to be large and slow
(although it is not necessary to have one radial unit for each training case, the
number still needs to be large), and like an RBF network, do not extrapolate.

Multivariate Regression Analysis (Polynomial PLS and PCR)

The predictive ability of the examined ANN was compared further to that
of classical multivariate regression.  A popular technique for multivariate regres-
sion is the partial least squares (PLS) regression with cross-validation as an
important concept that helps to identify the appropriate number of factors (or
latent variables, lv) to use.  Generally, PLS can be used to develop regression
models that relate to a number of independent predictor variables (X-block) to
one or more dependent or predicted variables (Y-block).  PLS relies on a decom-
position of the X-block (the physicochemical descriptors in the present study)
based on covariance criteria.  PLS finds factors (latent variables) that are descrip-
tive of X-block variance and are correlated with the Y-block (capacity factors).
PLS is advantageous to ordinary multiple linear regression (MLR) since it exam-
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ines for collinearities in the predictor variables (i.e. some variables are linear
combinations of other variables).  The PLS models converges to MLR solution if
all latent variables are included in the model.  

There are several ways to calculate PLS models, with the most commonly
used the non-iterative partial least squares (NIPALS) and the SIMPLS algo-
rithms, both of them giving exactly the same results for univariate.  The computa-
tional approaches for these two algorithms is well described in textbooks and it is
beyond the scope of the present study.  The polynomial PLS model works just
like the linear PLS using the same algorithms, except once a pair of latent vectors
is calculated, a polynomial of specific degree n is used to calculate the inner rela-
tion, replacing the b scalar for each latent variable with a b vector of polynomial
coefficients.  In the outputs of the function, b is a matrix (n+1 by lv).  In the pre-
sent study, it was confirmed that a polynomial with a degree of 2 generalizes bet-
ter than the higher degrees polynomials.

Principal components regression (PCR) is a well-known and popular tech-
nique for forming regression models in systems where there is a good deal of
variance in the independent or predictor variables.  PCR works by doing a PCA
decomposition of the predictor variables (X-block), then regressing the PCA
scores against the predicted variable(s) (Y-block).

RESULTS

We have performed a QSRR study using the data from literature14 as pre-
sented in Table 1.  For the development and evaluation of the artificial neural net-
work (ANN) systems, the same (eight) descriptors proposed in literature were
used in the present study also (see footnote of Table 1).  The nonlinearity of the
examined data set is highlighted in Figure 2, where a half matrix scatterplot sum-
marize the correlations between the examined input variables.  From Figure 2, it
is evident there is a strong linear relationship between inputs 5 and 8 and one
should decide to exclude one of these variables from the input layer.  Since the
purpose of the present study is the comparison with the published results (where
inputs 5 and 8 are present), it was decided not to exclude one of these inputs from
the architecture of RBF, PLS, and PCR models.  This particular set of solutes has
been studied already, and is ideal for the purpose of comparison.  

The neural network systems were simulated using Matlab Neural Network
Toolbox15 running on a Pentium II platform.  The input data were scaled before
entering the RBF network for training.  Training continued until there was no fur-
ther decrease in overall error after a period of 1000 cycles and the average train-
ing time for each run was few minutes for the examined RBF networks.  The
eight inputs correspond to the eight descriptors and the one output to the logarith-
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mic form of capacity factor values (Table 1).  The quality of the examined RBF
networks was assessed by two statistical variables: post training correlation coef-
ficient and the number of outliers in the test subset (the meaning of outlier it is
presented as footnote in Table 2).

Implementation of RBF Networks

Design of Training-Test Subsets

As far as the input variables and the dataset were selected, the next step was
the division of the dataset in three subsets, namely the training and test subsets.
The main requirement during training is the data presentation, meaning that the
samples in the data set should be (evenly) spread over the expected range of data
variability.  In order to avoid the risk of representative samples which are not
selected during training, we evaluated two different strategies of training set
design as suggested from Massart,16 namely the D-optimal design and the
Kohonen self-organizing map approach.

Briefly, D-optimal designs are performed whenever the classical symmetri-
cal designs cannot be used, because the experimental region is not regular in
shape, or the number of experiments selected by a classical design is too large.
The principle of this method is to select the experimental points to maximize the
determinant of the information matrix  X′X  .  This matrix is equal to the vari-
ance covariance matrix when X is defined as a matrix with n′ objects and m′ vari-
ables after centering (where n′ is the number of samples to be selected).  The
determinant of this matrix is maximal when the selected objects span the space of
the whole data; in other words select the most influential samples (maximal
spread).  There are several algorithms with Fedorov iterative algorithm17 which
can be the best choices.  We apply Fedorov’s algorithm with the initial points
selected by Sequential or Dykstra method,18 starting with an empty design,
searching through the candidate list of samples, and choosing, in each step, the
one that maximizes the chosen criterion.  There are no iterations involved; the
requested number of points will simply be picked sequentially.  The D-optimality
method selects the samples for the linear model y = Σ bi xi + e, where xi = the
input variable i.  From this procedure, the samples 2, 3, 4, 6, 7, 13, 15, 17, 18, 19,
22, 23, 25, from Table 1 were chosen and were included in the training data set.

Next a clustering technique, the Kohonen network, was adopted to select
the training cases.  Simon et al19 found that Kohonen self-organizing maps per-
formed best in a similar task.  The main goal of the Kohonen neural network is to
map objects from n-dimensional into two-dimensional space.  Objects with simi-
lar properties in the original space will map to the same node.  In the present
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study, a (3 x 3) Kohonen network was chosen containing 9 nodes.  The learning
rate was above 0.1 at the beginning and was linearly decreased to reach 0.01 at
the end.  The neighborhood size was also decreased linearly to reach a minimum
of 1 after half of the training cycles and to remain 1 for the rest of the training.
After stabilization of the network, it was observed that the samples chosen above
were spread in all of the activated nodes, denoting again the representation of the
whole space (Figure 3).  Similarly, the representative list of the test sub set was
isolated in the same manner.

Training the Three RBF Networks

In the present study, two different RBF architectures were examined.  In the
first case, we start our examinations from the exact RBF (RBFE), which perform

2248 LOUKAS

Figure 3. Mapping of all 25 solutes into the 3 x 3 Kohonen map.
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exact interpolation.  Exact interpolation is a highly oscillatory function, which is
generally undesirable and since the number of basis functions is equal to the
number of patterns in the data set, for large data sets the mapping function can
become very costly to evaluate.  For the best generalization an interpolating func-
tion much smoother should be preferred.  In RBFE architecture the network takes
matrices of input vectors p and target vectors t, and a spread constant spread for
the radial basis layer, and returns a network with weights and biases such that the
outputs are exactly t when the inputs are p.  This RBFE network creates as many
rb (radial basis) neurons as there are input vectors in p, and sets the first layer
weights to p’.  Thus, we have a layer of rb neurons in which each neuron acts as a
detector for a different input vector.  If there are Q input vectors, then there will
be Q neurons.

We have a QSFR problem with C constraints (input/target pairs) and each
neuron has C +1 variables (the C weights from the C rb neurons, and a bias).  A
linear problem with C constraints and more than C variables has an infinite num-
ber of zero error solutions.  Thus, RBFE creates a network with zero error on
training vectors.  The only condition we have to meet is to make sure that para-
meter spread is large enough so that the active input regions of the neurons over-
lap enough so that several neurons always have fairly large outputs at any given
moment.  This makes the network function smoother and results in better general-
ization for new input vectors occurring between input vectors used in the design.
However, spread should not be so large that each neuron is effectively respond-
ing in the same, large, area of the input space.  The drawback to RBFE is that it
produces a network with as many hidden neurons as there are input vectors.  For
this reason, RBFE does not return an acceptable solution when many input vec-
tors are needed to properly define a network, as is typically the case. 

To overcome the problem of RBFE, we examine a more efficient network,
the RBF, which iteratively creates a radial basis network adding one neuron at a
time.  Neurons are added to the network until the sum-squared error falls beneath
an error goal or a maximum number of neurons have been reached.  The RBF
network takes matrices of input and target vectors, p and t, and design parameters
error goal and spread and returns the desired network.  The design method of
RBF is similar to that of RBFE.  The difference is that RBF creates neurons one
at a time.  At each iteration the input vector, which will result in lowering the net-
work error the most, is used to create a rb neuron.  The error of the new network
is checked, and if it is low enough the RBF is stopped.  Otherwise the next neuron
is added.  This procedure is repeated until the error goal is met, or the maximum
number of neurons is reached.  Usually, a third (validation) subset is used to indi-
cate the end of training.  In the present case, as in many other cases in litera-
ture,10,16,20 this third subset is avoided and another criterion for stopping training
and controlling the overfitting phenomenon is used.  In the present study, the
mean square training error MSETr was adopted as stopping criterion:
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where N is the number of objects in the training data set, g is the number of out-
put variables, yij is the element of target matrix y (N x g) for the data considered
(i.e training set) and outij is the element of the output matrix out (N x g) of the
RBF.  In the present case, the RBF networks trained almost instantly so different
error goals were examined for stopping training.  The selection of the best RBF
networks was based on their generalization ability (see later). 

The second radial basis architecture examined is the GRNN.  It is similar to
the radial basis network, but has a slightly different second layer.  In the case of
GRNN network, we performed the same task as for the RBF networks above, in
order to get a function that fits individual data points fairly closely. 

Generalization Procedure

The term generalization means the ability of the examined models to pre-
dict the outputs in unseen data (test data set).  Although, the examined RBF net-
works were trained using the MSETr term as stopping criterion, in Table 4 is cal-
culated the relative standard error for predictions (%RSEP); a statistical term for
comparing the performance of the examined models (RBF, PLS, PCR and pub-
lished results) in the same data set:

RBF Networks

Having established each one of the examined RBF networks, a testing pro-
cedure was carried out.  In this process, ten compounds were removed (selected
in the unbiased way described above) from the complete data set prior to training
and served as the test set.  After training, the parameters of the ten compounds
unknown to the network were put into the network and the predictive activities of
these compounds were obtained. 
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With the correct weight and bias values for each layer and enough hidden
neurons, a radial basis network can fit any function with any desired accuracy.  It
is important that the spread parameter be large enough that the rb neurons
respond to overlapping regions of the input space, but not so large that all the
neurons respond in essentially the same manner.  If the spread of the radial basis
neurons is too high, each neuron responds essentially the same and due to the
large overlap of the input regions of the radial basis neurons the network cannot
be designed.  All the neurons always output 1 and so they cannot be used to gen-
erate different responses.  To see how the network performs with the different
spread values we perform a trial and error study as it appears in Table 2.  From
Table 2, it is becoming evident that as the spread increases from 0.1 to 50 the
number of outliers drops from 6 to 2.  Then it increases again to 5 with a spread
value of 100.  It is noticeable, also here, that the optimum spread value of 50
resulted in a correlation coefficient R-sq. of 0.883, much lower than the highest
correlation coefficient R-sq. (0.968) resulted from a spread value of 0.1 with 6
outliers.  This highlights the problem of over fitting, where the network trains
perfect but generalize (predict new data) poorly. 

The same procedure was followed also for the GRNN networks, where the
spread value of 60 gave the best performance (three outliers in the test data set,
Table 3).  The larger the spread is, the smoother the function approximation is.  A
small spread value of 0.1 fit perfect the training data set (post training coefficient
of 1) but generalizes poor (8 outliers).  As spread value increases the post training
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Table 2. RBF Networks Trained with Different Spread Values, the
Resulting Number of Outliers in the Test Subset as well as the Post Training
Correlation Coefficient R-sq. in the Training Subset

Post Training Correlation
Spread Coefficient R-sq. Outliersa

0.1 0.968 6
0.5 0.935 5
10 0.926 5
20 0.911 4
30 0.909 3
40 0.899 3
50 0.883 2
60 0.914 3
100 0.927 5

aAn outlier had |bindingobs - bindingpred| > 0.2.
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coefficient decreases with equal increase in predictive performance (fit the data
more smoothly).  The RBF with spread 50 and the GRNN with spread 60
resulted in the best performance with RBF resulting in lower outliers and predic-
tive values of higher accuracy, closer to the observed ones.  Table 4 summarizes
the %RSEP term, which characterizes the predictive abilities of the examined
models.  It is obvious that the superior performance of RBF network can predict
the capacity factors of ten new (unseen) solutes to the examined stationary phases.
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Table 3. GRNN Networks Trained with Different Spread Values, the
Resulting Number of Outliers in the Test Subset as well as the Post Training
Correlation Coefficient R-sq. in the Training Subset

Post Training Correlation
Spread Coefficient R-sq Outliers

0.1 1.000 8
1 0.981 5
10 0.905 4
50 0.883 4
60 0.875 3
70 0.867 3

Table 4. Test Subset of Ten Solutes, the Observed (Experimental) Capacity Factors, the
Predicted from the RBF Network with Spread Value of 50 (see Table II), the Predicted
from the PLS and PCR Methods and the Published Results. The Comparison of the
Prediction Abilities of the Examined Models Was Based on Their %RSEP Values

Solutes Experimental RBF Predicted PLS Predicted PCR Predicted Published14

5 1.502 (1.528)a 1.487 (1.488) 1.349 (1.285) 1.040 (1.121) 1.277 (1.039)
8 0.835 (0.589) 0.925 (0.765) 1.084 (0.972) 1.286 (1.014) 1.206 (1.003)

10 0.584 (0.313) 0.755 (0.525) 0.590 (0.324) 0.976 (0.850) 0.778 (0.707)
11 1.129 (0.916) 0.865 (0.989) 0.765 (0.599) 1.118 (0.941) 0.859 (0.695)
12 0.337 (0.867) 0.465 (0.658) 0.186 (0.107) 0.580 (0.129) 0.647 (0.416)
14 0.099 (0.047) 0.225 (0.135) 0.533 (0.319) 0.345 (0.325) 0.440 (0.318)
16 0.822 (0.647) 0.745 (0.798) 0.929 (0.808) 0.624 (0.604) 0.730 (0.540)
20 1.769 (1.583) 1.985 (1.854) 1.735 (1.657) 2.096 (1.958) 2.082 (1.850)
21 0.758 (0.758) 0.695 (0.690) 0.874 (0.746) 0.629 (0.632) 0.818 (0.633)
24 0.574 (0.021) 0.675 (0.242) 0.712 (0.523) 0.823 (0.433) 0.798 (0.648)
%RSEP — 14.84 (18.98) 19.54 (39.72) 31.23 (44.88) 26.76 (41.92)

aNumbers in parenthesis correspond to capacity factors with the second stationary phase.
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Quadratic PLS and PCR Models

Further to the RBF networks the same data set of the 25 solutes was used to
perform classical multivariate regression such as PCR and quadratic PLS, which
attempts to maximize covariance (to do both, capture variance and achieve corre-
lation) and variance, respectively.  The question that arises is: how many factors
(latent variables) should be chosen?  In the case of PCR, the first four compo-
nents were used which captured 88.75% of the total variance with an eigenvalue
of 0.807 and the lowest root-mean-square error of cross-validation (RMSECV),
which is a measure of model’s ability to predict new samples. RMSECV and
RMSEC (root-mean-square error of calibration; tell us about the fit of the model
to the calibration data) were represented graphically against a number of factors
(Figure 4) where the conclusion for selecting four factors are supported.  Adding
the remaining factors, the RMSEC continues to decrease while there is a signifi-
cant increase in RMSECV.  Similarly, in the case of quadratic PLS, the model
with 2 latent variables performs the best prediction.  The development of a PLS
model with 2 latent variables and a PCR model with the first four PCs resulted in
the predictions shown in Table 4, together with the published results.  From the
%RSEP values, it is evident that the performance of PLS model is slightly better
than the published results, while the worst predictions were derived from the PCR
model.

Sensitivity Analysis

In the present study, in order to draw some conclusions on the relative
importance of the used input variables (the eight descriptors), we conducted a
sensitivity analysis21 on the inputs to the best neural network derived from the
above analysis (see Table 2).  This indicates which input variables are considered
most important by that particular neural network.  Sensitivity analysis rates vari-
ables according to the deterioration in modeling performance that occurs if that
variable is no longer available to the model.  Sensitivity analysis does not rate the
“usefulness” of variables in modeling in a reliable or absolute manner.  It simply
indicates the performance of the network if that variable is “unavailable” (impor-
tant variables have a high error, indicating that the network performance deterio-
rates badly if they are not present).

In the present study, the importance of the inputs was the following: the
most influential descriptors are those related to the solute volumes (Vaq and Vx -
see footnote of Table 1).  Even though there is a strong relationship (rcorr = 0.99)
between these two volume variables and one of them should be discarded as
redundant, we retained both in the design of the examined models since we used
the descriptors from literature without any preprocessing (variable selection) pro-
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cedure.  The next important variables are the ones related to the charge conditions
and polarity of the solutes (dipolarity π2

H and dipole moment µ).  Next to the size
and polarity of molecules the variables related to the ability of solutes to form
hydrogen bonds with the molecules of either the aqueous or stationary phase
(Σα2

H and Σβ2

H) follow in importance.  The current observations highlight the
mechanism of migration procedure through the aqueous phase for the specific
stationary phases.  Using a different stationary phase the prediction of the chro-
matographic elution will be possibly based on different descriptors highlighting a
different chromatographic mechanism.  The selection of the most important
descriptors could be of great interest to the research dealing with chromato-
graphic separations.
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Figure 4. RMSEC and RMSECV vs. latent variables in PCR modeling procedure.
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CONCLUSION

The data set of the 25 diverse substances as solutes to different stationary
phases, is a representative sample from the population of solute:stationary phase
interactions, where it is necessary to model the interaction procedure and to pre-
dict the capacity factor values.  In the present study, the examined radial basis
function networks, namely RBF and GRNN, as function approximate systems,
behaved with high accuracy and outperformed linear and nonlinear multiple
regression systems.  If we add to the increased accuracy of RBF networks, the
lack of difficulty to find an optimum architecture and the almost instant training,
it could be easily concluded that RBFs could be a significant partner to the devel-
opment of different QSRR systems. 
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